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Abstract—New techniques in X-ray scattering science exper-
iments produce large data sets that can require millions of
high-performance processing hours per week of computation for
analysis. In such applications, data is typically moved from X-ray
detectors to a large parallel file system shared by all nodes of a
petascale supercomputer and then is read repeatedly as different
science application tasks proceed. However, this straightforward
implementation causes significant contention in the file system.
We propose an alternative approach in which data is instead
staged into and cached in compute node memory for extended pe-
riods, during which time various processing tasks may efficiently
access it. We describe here such a big data staging framework,
based on MPI-IO and the Swift parallel scripting language. We
discuss a range of large-scale data management issues involved
in X-ray scattering science, and we measure the performance
benefits of the new staging framework for high-energy diffraction
microscopy, an important emerging application in data-intensive
X-ray scattering. The use of our framework has been shown to
accelerate scientific processing turnaround from three months to
under 10 minutes, and our I/O technique reduces input overheads
by a factor of 5 on 8K Blue Gene/Q nodes.

I. INTRODUCTION

Many branches of science face a big data challenge as
experimental sensors and simulators produce ever larger data
sets. X-ray scattering experiments at facilities such as the Ad-
vanced Photon Source (APS) at Argonne National Laboratory
(ANL) are no exception. Improvements in detector technology
can produce ∼15 TB per week or more of raw image data;
subsequent processing can more than double that quantity.
These increases in data sizes outpace increases in computer
performance, creating a crisis situation. These datasets will
either be used to advance X-ray science in a transformative
way, or be discarded.

Big Data tools must be applied to the scientific work-
flow to make these data sets manageable and useful. This
includes all aspects of the data management cycle: ingest,
metadata management, bulk data movement and storage, and
accessibility for processing and analysis. Further, we desire
solutions that can be run interactively: that is, while the
scientist is operating the X-ray equipment, data processing
operations proceed on available clusters and high-performance
computing (HPC) resources, so that experiment time is used
optimally. Thus, any errors in the experimental setup may be
quickly detected and corrected, and interesting features may be

identified. Today, data analysis commonly is performed weeks
or months after data is collected; we have demonstrated the
ability to accelerate the scientific cycle to minutes.

The first stage of X-ray scattering analysis is essentially
an image processing problem. X-ray detectors produce large
quantities of images in standard formats. Scientific tools
already exist for various types of analysis but are constantly
under development; they are designed for execution on small-
scale resources such as a laptop. The analysis tasks are
generally independent. Thus, a many-task framework that can
rapidly compose applications from these existing codes and
run them at high concurrency levels could address many
computing problems in X-ray image analysis. As shown in
our results, this approach attains high performance without
additional low-level coding (such as MPI messaging).

In this paper, we consider all aspects of the X-ray science
data management cycle, but we emphasize a key problem:
presenting large data sets for many-task processing on su-
percomputers such as the IBM Blue Gene/Q (BG/Q). These
supercomputers can be used by a many-task framework such
as Swift, but must provide high-efficiency access to data
sets. As our performance results show, individual tasks cannot
independently access the shared file system and achieve high
performance.

Our approach is to stage input data to compute-node-
local filesystems, such as the RAM disk on the BG/Q (or
a solid-state disk on a hypothetical system). We load this
data using a simple technique built around MPI-IO shared
file operations for maximal efficiency. Once data staging is
complete, scientific workflow tasks are distributed to proces-
sors where they can perform local data operations with high
I/O rates. Our approach thus combines a collective phase for
big I/O operations with a loosely coupled phase consisting of
independent data analysis tasks. For interactive analysis, the
staged data could be reused over several human-in-the-loop
cycles (although we do not address that here).

Figure 1 is a simplified diagram of our framework. Scientific
instruments, such as X-ray detectors, produce large quantities
of data that are streamed to the parallel filesystem (e.g., GPFS)
of the HPC machine. When an analysis run is triggered, this
data is staged to RAM disks (e.g., /tmp) on each compute
node (not each core). This operation uses available collec-
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Figure 1: Overview of I/O staging; many-task workflow.

tive I/O libraries (e.g., MPI-IO MPI_File_read_all()).
Then, the workflow proceeds, with independent tasks execut-
ing to process local data.

This approach offers many benefits. First, the underlying
scientific codes are not modified; no new library used by the
codes. They simply operate on data in the local directory
instead of a shared filesystem directory. Second, we provide
a high-level interface to the data staging operation—the user
does not use MPI-IO directly. Third, the user workflow is
a full-featured language, capable of expressing MapReduce
and more general patterns, including loops, conditionals, and
functions.

The remainder of this paper is organized as follows. In §II,
we present an overview of a feature application in this paper:
high-energy diffraction microscopy. In §III, for completeness,
we present an overview of the Swift language, used to program
the workflows described here. In §IV, we describe the new
Swift I/O hook feature that we introduce for I/O enhancement.
In §V, we describe the HEDM workflows in more detail.
In §VI, we provide performance results, and in §VIII, we
summarize our results.

II. SCIENTIFIC OVERVIEW: HIGH ENERGY DIFFRACTION
MICROSCOPY

We review here the scientific application that motivates our
work in I/O optimization for many-task computing. We note
that the physical parameters of the scientific experiment have
a direct impact on various computing requirements (data size,
available concurrency, task granularity, etc.).

High-energy diffraction microscopy (HEDM) [7], [16], [17]
is an important method for determining the grain structure of
metals. It is performed at specialized light sources such as the
APS. In the typical scientific workflow, the scientist applies
for a week of beam time and spends that time gathering data.
Over the next several months, the data is processed by using
custom-built tools. In current practice, HPC is rarely if ever
applied during the week of beam time.

Our work is intended to allow the use of HPC to analyze
data quickly: as it is produced by the experiment detectors or
immediately after. This integration of HPC into the scientific
workflow has many potential benefits. As we show below, it
can permit rapid detection of and recovery from errors. It may
provide feedback to the scientist during the run, to improve the

quality of results and the utility of precious beam time. The
overall result is to speed the process of scientific discovery,
even if the HPC is applied after beam time.

We focus here on the application of HPC to an HEDM
application, in an environment that encompasses an APS beam
line, a small compute cluster, and the Argonne BG/Q HPC
system. We use up to 64K cores of the BG/Q to provide near-
real-time feedback to APS beam users.

HEDM is a diffraction-based imaging technique that can
non-destructively determine the grain-level properties of poly-
crystalline materials. It yields unique in situ 3D information
which has previously only been available through destructive,
but more widely-availabe microscopy techniques, such as
electron backscattering diffraction (EBSD). Hence, it is a valu-
able technique for analyzing grain defects in advanced alloy
materials, such as those used in turbine blades for both energy
(e.g., wind turbines) and engine applications (e.g., jet engine
turbines). The technique allows a material sample, or even a
manufactured part, to be studied in situ at an APS beamline
across a range of applied thermal and mechanical loading con-
ditions. A polycrystalline material sample (typically a metal
alloy) is positioned within a high-energy (E > 50 keV) X-ray
beam, producing forward-scattered X-rays that are collected
by a range of detectors to yield 2D material information. A
series of diffraction patterns is then collected as the sample
rotated about a single axis perpendicular to the incident X-
ray beam. The diffraction patterns are analyzed by software
tools to reconstruct the 3D structure of the material, in order
to determine the granular structure of material defects that can
cause component failure in fabricated parts.

Depending on the detector type and its placement with
respect to the sample, HEDM has two variants. In the near-
field (NF) variant, a high-resolution detector (approx. 1.5 µm
pixel size) is places in close proximity to the sample (approx.
10 mm). In the far-field (FF) variant, a medium resolution
detector (approx. 200 µm pixel size) is placed at a relatively
larger distance from the sample (up to 1 m).

The near-field HEDM technique works as follows. A line-
focused X-ray beam and a detector are used to collect diffrac-
tion data from a 2D cross-section (“layer”) of a rotating
polycrystalline sample. 2D TIFF images, each 8 MB in size,
are collected at each angle of rotation, typically 360 to 1,440
angles per layer, and for multiple detector distances. The
computational analysis is split into two stages. In Stage 1,
the diffraction images are binarized to detect pixels with
diffraction signal. In Stage 2, a grid is simulated on the virtual
2D cross-section of the sample, and diffraction signals at
each point on the grid are calculated and compared with the
diffraction images. This computation is parallelized at the grid
point level for a total of ∼105 points per layer, enabling the
concurrent use of tens of thousands of processor cores.

The NF-HEDM sample in Figure 2 shows the cross section
of a roughly round gold wire. Each point in the hexagonal
grid is displayed as a colored dot (the grid is a hexagonal
prism in 3D). The four colors correspond to the four distinct
grains identified in this sample, providing rich information
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Figure 2: NF-HEDM grain identification for cross section of
gold wire. Each grid square is 5 µm. Sample points of the
same color have the same crystallographic orientation and are
thus the same grain.

about grain characteristics. The sample shown has 601 points
corresponding to that many tasks; each task runs for about 10
minutes.

In far-field HEDM, a “box” beam with a rectangular cross-
section illuminates a volume in the polycrystalline sample.
The sample is rotated to capture multiple diffraction spots
from each grain (contiguous region with the same crystal
orientation) in the sample. A diffraction image, 8 MB in size, is
recorded for 360 to 1,440 positions during the sample rotation.
In the first step of analysis, the diffraction images are seg-
mented, and properties of the diffraction spots are calculated.
In the second step, the diffraction spots are assigned (called
“indexing”) as belonging to grains, and properties of the grains
are calculated. By imaging a volume instead of a cross section,
FF-HEDM can image more material per unit time, but at a
lower information level than NF-HEDM.

An FF-HEDM sample is shown in Figure 3. This shows
the cross-section of a roughly round wire of an experimental
material. In contrast to the NF-HEDM diagram, each dot here
represents a grain center; only one point is shown per grain.
This level of information is sufficient to measure material
response to stress and deformation and provide feedback
to material manufacturing techniques (e.g., annealing). This
diagram has 572 grid points. The 4,109 tasks for this case are
described further in §VI-D.

III. OVERVIEW OF THE SWIFT LANGUAGE

Swift [24] is a dataflow language for scientific computing,
commonly used in cluster, cloud, and grid environments. Its

Figure 3: FF-HEDM grain identification for cross section of
experimental material. Each grid square is 200µm. In this
technique, only grain centers are identified, and grain sizes
vary widely, producing the apparently unstructured image
shown.

recent re-implementation, Swift/T [26], is designed for use on
HPC systems. It operates by translating the Swift program
into a format for execution on an MPI-based runtime [27],
providing performance of up to 1.5 billion tasks/s on 512K
cores of a Cray XE6 system. This performance is accom-
plished with a combination of compiler optimizations [2], an
enhanced workflow enactment technology called Turbine [25],
and a high-performance load balancer called ADLB [8].

Swift is an implicitly parallel language—all expressions
may be evaluated concurrently, limited only by dataflow
ordering and available processor. This allows for a natural par-
allel programming style, while still allowing for conventional
constructs such as for loops and if conditionals, as well as
other features that allow good use of practical machines [28].
Users may link to user code in compiled (C, C++) or scripting
languages (e.g., Python, Julia) in leaf functions, external code
that consumes and produces Swift data (numbers, strings, byte
arrays, etc.). Data is moved through the Swift workflow over
MPI but does not require the user to write MPI code.

As a language, Swift has many features that promote big
data programming. First, Swift has a rich feature set for typical
filesystem tasks: it supports simple calls to common shell
programs, provides glob and other typical operations, and
includes a mapper concept to map Swift variables to filesystem
objects (or URLs). Second, Swift provides locality and work
type features to send work to data and reduce data movement.
Third, the dataflow programming model can express a wide
range of data analytics algorithms elegantly and make them
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1 main {
2 file d[];
3 int N = string2int(argv("N"));
4 // Map phase
5 foreach i in [0:N-1] {
6 file a = find_file(i);
7 d[i] = map_function(a);
8 }
9 // Reduce phase

10 file final <"final.data"> = merge(d, 0, tasks-1);
11 }
12
13 (file o) merge(file d[], int start, int stop) {
14 if (stop-start == 1) {
15 // Base case: merge pair
16 o = merge_pair(d[start], d[stop]);
17 } else {
18 // Merge pair of recursive calls
19 n = stop-start;
20 s = n % 2;
21 o = merge_pair(merge(d, start, start+s),
22 merge(d, start+s+1, stop));
23 }
24 }

Figure 4: MapReduce-like application expressed in Swift.

extensible through the addition of Swift code.

For example, consider the popular MapReduce [5] frame-
work. It would be interesting to extend this framework to sup-
port loops, conditionals, or subworkflows, but such extensions
would require significant changes to the whole MapReduce
implementation. A Swift implementation of MapReduce al-
lows such changes to be made and tested piecemeal by adding
lines to the script. We show in Figure 4 a simplified Swift
implementation of MapReduce, with a single merge bucket. (A
complete MapReduce implementation is the subject of work
under preparation for submission elsewhere.) In this code,
find_file(), map_function(), and merge_pair()
are user-written leaf functions that consume and produce
ordinary files. These functions can be implemented in any
language and presented to Swift.

A dataflow diagram of the MapReduce implementation is
shown in Figure 5. The application proceeds as follows. First,
an integer N is obtained from the user command line (line
3). The map phase operates simply: for each value of i
from 0 to N-1, a file a is obtained and processed with the
map_function() (lines 6–7). The result is stored in array
d. The map functions operate concurrently and are automati-
cally load balanced, limited only by available processors. The
reduce phase (line 10) begins as soon as mergeable data is
available. This is implemented here as a recursive (line 21)
pairwise reduction on the contents of d. merge_pair() is
called on consecutive entries in d (line 16), then recursively re-
duced pairwise up to the top call to Swift function merge().
The resulting file (variable final) is stored in physical file
final.data (line 10).

Note that this dataflow expression of simplified MapReduce
does not have a barrier between the map and reduce phases
(see [23]).
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Figure 5: Dataflow diagram of MapReduce-like application.

IV. THE SWIFT I/O HOOK

As described in §III, Swift may be used to express
complex data analytics workflows, make use of data locations,
and operate with high performance. In typical HPC settings,
however, data is stored in a shared parallel filesystem and is not
resident on compute nodes (as in HDFS). Thus, data must be
quickly staged to compute nodes for processing. Then, Swift
execution can proceed, operating on node-local data as well
as shared data (if desired).

This feature can be used to address filesystem congestion
problems due to bandwidth or many-small-file congestion.
For example, on an HPC system such as the BG/Q, plain
executables are already broadcast efficiently to all compute
nodes prior to execution by the standard BG/Q operating
system. Swift scripts, however, may desire to make use of
a large collection of small Python scripts or C++ shared
libraries. The operating system cannot automatically load
these on compute nodes efficiently. The Swift I/O hook can
be used to pre-stage any such data: scripts, shared objects,
configuration files, and so on, thus improving application start
time and reducing impact on other system users. Bandwidth
saving is a simpler benefit; we eliminate unnecessary duplicate
bandwidth consumption. The Swift I/O hook is thus designed
to reduce I/O traffic for both small and large file operations,
including its operations used in its implementation.

The Swift I/O hook is implemented in the following way.
First, a leader communicator is automatically constructed by
the runtime. This MPI communicator consists of exactly one
ADLB worker process per node. If a leader hook (e.g., the I/O
hook) is provided in an environment variable, it is executed by
each process in the the leader communicator. More complex
scripts can be distributed by using the leader hook environment
variable and then entered by the hook script.

We show in Figure 6 the code for an example Swift I/O
hook. This fragment, which is evaluated by the interpreter in
the Swift runtime, defines a list of broadcast definitions, each
of which targets (broadcast to) a node-local directory
location. The file list can contain glob patterns.

In order to avoid filesystem metadata contention, the file list
is also broadcast by using MPI_Bcast(), with the result that
only one process performs any globs. (A naive implementation
would simply run the glob on each process to obtain the list
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1 broadcast to /tmp files {
2 ∼/dataset-1/*.cfg
3 }
4
5 broadcast to /tmp/bulk files {
6 ∼/dataset-1/bulk/file1.index
7 ∼/dataset-1/bulk/file2.index
8 ∼/dataset-1/bulk/*.bin
9 }

Figure 6: Example Swift I/O hook specification.

of transfers to perform, congesting the shared filesystem.)
The hook is then used from the command line as follows:

1 SWIFT_IO_HOOK=$(cat hook) swift-t options program ...

At execution time, the Swift/T implementation processes the
I/O hook shortly after initializing its communicators. Swift/T
performs the globs on one rank, broadcasts the list of files to
transfer, then uses MPI_File_read_all() to make read-
only replicas of each file on each node-local file system.

Future directions: The leader hook is a generic mechanism
that may be generalized for more complex functionality in the
near future. The leader communicator, a new feature, is derived
from the Swift/T hostmap functionality, which maps host
names (nodes) to MPI ranks, allowing for location-specific
programming at the workflow level [28].

The leader hook is actually a Tcl fragment and thus in
essence provides an extension language for Swift/T. In prin-
ciple, the user can use this language to access the leader
communicator and program arbitrary operations. Since this is
an error-prone process, however, we provide the high-level
wrapper syntax shown in Figure 6 (which is still Tcl code).

V. APPLICATION DESCRIPTION

Having discussed the scientific application of interest in §II
and our software system in §III – §IV, we now describe
the motivating scientific workflow and practical details that
motivate our solution.

A. The scattering science workflow

Scattering science is a complex process that involves in-
struments, computers, and humans in the loop. The APS is a
major scientific investment, hosting 5,000 users per year [1].
Users typically visit the laboratory for one week, during which
they have access to beam resources 24 hours a day. Typically,
data is collected on portable hard drives that are carried to
the user’s home institution for processing and analysis. High-
resolution detectors can produce 15 TB per week, but typical
users fill less than one hard drive.

Our high-level goal is to improve this human-in-the-loop
workflow by delivering enough computing power to the appli-
cation so that analysis can be performed during beam time,
that is, while the visitor is present at ANL. The HEDM
application considered in this paper could use ∼22 M CPU
core hours per week, a quantity that can be obtained only
on extreme-scale supercomputers. However, the process is
additionally constrained by the size of data to be moved to
the supercomputer and the amount of data to be transferred to
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Figure 7: Cross-lab APS to ALCF workflow.

compute nodes—these are the Big Data problems. In the most
recent run, considered here, 2 TB of data were collected in
two days. Without our optimizations, roughly half of the time
is spent in I/O and half in computing.

Additionally, the human-in-the-loop nature of the runs mo-
tivates I/O advancements. It is desirable for the investigator
to be able to visualize detector data and detect anomalies or
make decisions as soon as detector data is available. In order
to keep up with the detector data generation rate, the entire
workflow must complete in five minutes. Thus, I/O overheads
cannot be amortized into long running jobs, but must operate
at near-interactive rates. Our methods have been able to reduce
run times for experimental datasets to below that rate, given
enough compute cores. (Reservations on BG/Q systems have
been allocated to users on the beamline, allowing interactive
use without queues.)

B. Workflow practicalities

The raw TIFF files are reduced to binary files containing
only information about the diffraction signal of the detector.
Because of the sparse nature of the data, each 8 MB raw file
can be reduced to an ∼1 MB binary file. This reduction is
performed by using 320 cores on Orthros, each using about
2 min of CPU core time. These binary files are fed into an
orientation detection program to map the orientation of each
point in a grid in the 2D cross-section of the sample. Two
approaches are possible for this step. Using 320 cores on
Orthros, at about 30 s for each grid point (a total of 100K
grid points), we can obtain results in three hours. Using 10,000
cores on the Mira BG/Q or a similarly parallel resource, we
can scale this workflow to obtain results in less than five
minutes.

The ∼10 MB output file contains information about the
orientation of each point in a grid in the 2D cross-section
of the sample. All analysis software has been developed in-
house in Sector 1, implemented in C. Parallel processing of the
analysis routines is implemented by using the Swift parallel
scripting language.

Figure 7 shows the NF-HEDM workflow in detail. The
detector produces data on an NFS installation at the APS 1
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1 main {
2 parameterFile = argv("p");
3 microstructureFile = argv("m");
4 start = toint(argp(1));
5 end = toint(argp(2));
6 foreach row in [start:end] {
7 FitOrientation(parameterFile, row,
8 microstructureFile);
9 }

10 }

Figure 8: Swift/T fragment for NF-HEDM stage 2.

and large numbers of data reduction jobs are run on the local
cluster, Orthros 2 . The resulting data is moved via the
Globus transfer service [6] to Argonne Leadership Computing
Facility (ALCF) storage 3 , and recorded in a metadata
catalog 4 [9]. Finally, the HPC component runs 5 , in
which a large batch of hundreds of thousands of optimization
operations are performed rapidly across tens of thousands of
CPU cores of a BG/Q.

In this model, C analysis code developed for this work is
linked to the NLopt optimizer library and the GNU scientific
library. These C code tasks are grouped into a large Swift
script, which compiles into an MPI program for execution on
a large HPC resource.

C. Code fragments

As a concrete example, we show in Figure 8 the Swift code
for stage 2 of the NF-HEDM application. This program takes
as arguments input parameter file and output microstructure
file names, as well as a range of grid points to analyze,
allowing for variable-sized runs. Then, each grid point (row) is
analyzed in parallel with FitOrientation(), a C function
that uses NLopt to fit the grain. These tasks are eligible to
run concurrently with automatic load balancing due to the
Swift foreach loop. The C function requires all input data
specified by the parameter file and distributed by the Swift I/O
hook; the output is inserted into the microstructure file.

VI. PERFORMANCE

We next present performance data for the HEDM applica-
tions when running under our system. Cluster timings were
obtained on Orthros, a 320-core x86 cluster at the APS. An
Orthros node has 64 AMD cores running at 2.2 GHz. HPC
results were obtained on the BG/Q systems at the ALCF.
Each BG/Q node has 16 cores (64 threads) in the PowerPC
A2 architecture running at 1.6 GHz. Runs at or below 8,192
cores were performed on the ALCF’s smaller BG/Q, Cetus;
runs above that were performed on the larger Mira system.
Both BG/Q systems run GPFS [14]; the installation supports
a peak I/O performance of 240 GB/s [4].

A. NF-HEDM: Data reduction step (cluster)

The data reduction step involves carrying out a median
calculation on each pixel of the detector using all images.
Then, independently on each image, a median filter is applied
followed by a Laplacian of Gaussian filter to determine the
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(POSIX)
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Figure 9: Definitions of data movement operations in the Swift
I/O hook. HEDM is the unmodified scientific application.

edges of the diffraction spots; a connected components label-
ing step; and a flood fill operation to get information regarding
all useful pixels in the image. When run on Orthros at our
maximum allocation size of 320 cores, this stage required
106 s to process a total of 736 images from two detector
distances.

B. NF-HEDM: Analysis step (HPC)

The analysis step highlights the key contribution of this
paper: the Swift I/O hook. We profile the use of the I/O hook
as well as the overall application.

1) I/O profiling: We first isolate the input operations in
order to study their performance independently of the rest of
the application. As shown in Figure 9, we distinguish three
I/O steps: Staging, Write, and Read. The Swift I/O hook
performs the Staging and Write steps, replicating data from
the filesystem to node-local storage. (Note that on the BG/Q
the /tmp RAM disk is actually an I/O node service.) The
Read phase is performed by the application task itself, by
simply reading from the appropriate directory specification
(e.g., /tmp).

In our first experiment, we configured NF-HEDM to process
a 577 MB data set from GPFS. Each node requires a full
replica of the data set for use by tasks on that node. Figure 10
shows the performance measured for the Swift I/O hook as it
reads data from GPFS using MPI/IO and writes the resulting
data to node-local storage. At our highest reported node count,
8,192 nodes, the system delivers data at an aggregate rate of
134 GB/s.

The Read phase consistently takes 10.8 ± 0.1 s regardless
of allocation size, for a per-process read bandwidth of 53.4
MB/s—comparable to a conventional node-local disk with
ideal scalability.

To determine the aggregate end-to-end input bandwidth
achieved by our approach, we add together the time taken
for the joint Staging/Write and Read phases. The upper line
in Figure 11 shows the result, which reaches 101 GB/s on
8,192 nodes. In contrast, the original I/O approach, in which
each task reads input data independently from GPFS, without
the use of collectives achieves only 21 GB/s on 8,192 nodes.

We modified NF-HEDM to cache all inputs in application
memory (for each variable, tasks first check to see if it has
already been read, if not, they perform read operations to
instantiate it). Since Swift/T reuses the same processes for
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Figure 10: Staging+Write performance for NF-HEDM data
set.

Figure 11: End-to-end performance for NF-HEDM data set.

subsequent tasks, HEDM tasks after the first do not need to
perform Read operations at all. This approach reduces input
time to effectively zero for subsequent tasks.

In terms of wall time, the Swift I/O hook reduces the input
time from 210 s to 46.75 s, improvement by a factor of
4.7, making data available to 8,192 nodes (524,288 hardware
threads).

C. FF-HEDM: Stage 1 (cluster)

In FF-HEDM stage 1, each process loads a diffraction image
(8 MB) and characterizes all peaks in the image. The output
is saved as a text file (∼50 KB). We performed runs on
720 images, with each image being processed in parallel.
Depending on the number of diffraction spots in each image,
the processing time per image can vary from 5 s to 160 s.
Figure 12 shows the scaling results for the 720 jobs run on
Orthros.

D. FF-HEDM: Stage 2 (cluster)

The number of tasks in this case is data-dependent, varying
with the number of grains within the sample volume illumi-
nated by the diffraction beam. For our experiments, we work
with a sample that comprises 4,109 grains and thus tasks, with

Figure 12: Makespan scaling result for FF-HEDM stage 1.

Figure 13: Makespan scaling result for FF-HEDM stage 2.

the run-time per task varying between 5 and 25 s, depending
on the optimization landscape. Figure 13 shows the scaling
results for the 4,109 jobs run on Orthros.

VII. RELATED WORK

We aim in this work to make Big Data analysis feasible on
HPC systems such as the BG/Q. Our approach is to rapidly
fill node-local storage with data for in-place processing, and
then launch analytics tasks using a flexible, general-purpose
dataflow programming model. While this approach is unique,
much related work has been done.

The term scratch has multiple meanings but can be applied
to the use of a specialized, high-performance filesystem that
trades reliability for performance. However, while scratch
space may be intended to be used as cache, it is not typically
used as such for a variety of reasons, leaving users with just
another filesystem. The Scratch as a Cache system [11] acts
on user-provided hints in the job submission script, loading
inputs into the fast filesystem automatically, improving on
workflow-oblivious least-recently used (LRU) and other com-
mon techniques. The interface to Scratch as a Cache is similar
to ours in that files are specified by the user and moved to a
high-performance store, improving on automated techniques.
However, we focus on the use of node-local storage.
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Workflow-aware storage/scheduling systems, including the
Batch-Aware Distributed Filesystem (BAD-FS) [3] and the
Workflow-Aware File System (WASS) [20]), use workflow
information to make caching decisions, including an ad hoc
broadcast mechanism in WASS. BAD-FS does not use col-
lective I/O operations. WASS performance peaked at eight
replicas (our results show performance gains up to and beyond
8K replicas). BAD-FS and Freeloader [22] use cooperative
caches that focus on write-once, read-many workloads (like
ours) but access nearby cached copies, instead of using col-
lectives. Other uses of node-local storage in HPC typically
focus on write caching and aggregation, not reads, as in our
work.

Data Diffusion [13] uses a distributed cache with a dis-
tributed index to support many-task, data-intensive Falkon [12]
workloads for up to 128 processors; FusionFS employs a
similar architecture reporting larger results up to 1,024 nodes.
The Chirp [19] and AMFS [29] systems feature broadcast
operations in the cache storage system but use ad hoc data
distribution libraries and do not report performance results at
the scale of interest here.

Extract-Transform-Load (ETL) is a collection of method-
ologies and technologies used in data warehouses to move
data from sources to processors. It is responsible for “(i) the
extraction of the appropriate data from the sources, (ii) their
transportation to a special-purpose area of the data warehouse
where they will be processed,” and other operations [21]. ETL
is conventionally connected strongly to database applications
and does not emphasize collective operations or concurrency.
MapReduce has been considered as an ETL system [18] but
not with a highly concurrent preliminary staging operation.
MapReduce typically operates on in situ (i.e., compute node
resident) data, as does Dremel [10].

MRAP [15] explored the idea of copying and converting
data from a parallel filesystem and scientific data format to
a Hadoop system in a MapReduce-friendly format. However,
it does not consider the use of collective I/O and focused on
formatting issues.

VIII. SUMMARY

X-ray scattering is a broad and complex application area.
We have focused here on a key part of the X-ray scattering
analysis problem—moving data to processors for computa-
tional analysis. We described how the Swift language can be
used to express data analysis tasks in an elegant way, sup-
porting common data analytics patterns such as MapReduce
as well as the scientific pattern for HEDM. We reviewed
the scientific and practical details of X-ray science and the
HEDM application, and we provided a detailed presentation
of our key contribution: the use of MPI-IO for data staging for
Big Data analytics. We described the implementation of this
technique and presented performance results. We showed that
our HPC-oriented approach can be used to complete the whole
analysis phase of the HEDM workflow extremely quickly (∼5
minutes), which is suitable for interactive scientific use.
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